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1. Introduction

The gauge/gravity correspondence [1] is one of the major achievements of string theory in

the last ten years (see [2] for a review). Its extension to include more realistic theories is,

clearly, a topic of great interest. In particular, the addition of matter degrees of freedom is

essential to get nearer to the string theory description of QCD-like theories. This addition

can be performed by including extra (flavor) branes [3], which should be extended along all

the gauge theory directions and wrap a non-compact cycle in order to make its worldvolume

symmetry a global symmetry from the point of view of the gauge theory living in the color

branes. They introduce an open string sector that corresponds to having hypermultiplets

transforming in the fundamental representation in the gauge theory side.

If the number of flavors, Nf , is small compared with the number of colors, Nc, one

can treat the flavor branes as probes in the supergravity background created by the color

branes. This defines the so-called quenched approximation, which corresponds, in the field

theory side, to neglecting quark loops, which are suppressed by factors 1/Nc in the ’t Hooft

large Nc expansion [4]. This quenched holographic flavor has been explored extensively in

the past few years. In particular, by analyzing the normalizable fluctuations of the probe

branes, the spectra of mesonic excitations of different theories have been analyzed (see [5]

for a review and a list of references).

On the contrary, if the number of flavors is of the order of the number of colors

(Nf ∼ Nc) the backreaction of the flavor branes on the geometry cannot be ignored and one

has to deal with a system of gravity plus branes, the latter acting as dynamical sources for

the different supergravity fields. On the field theory side the inclusion of the backreaction

in this Nf ∼ Nc regime is equivalent to considering the so-called Veneziano limit [6], in

which Nc and Nf are large and their ratio Nf/Nc is fixed. In this limit quark loops are

not suppressed and the flavor is unquenched.

Another direction in which the original gauge/gravity duality has been generalized is

by extending it to theories with lower amounts of supersymmetry. A general strategy to

carry out this extension of the correspondence to less supersymmetric models is to consider

higher dimensional branes wrapping cycles. At energies small compared with the size of the

cycle the theory becomes effectively four-dimensional. Moreover, the gauge theory living on

the worldvolume of the wrapped brane has to be topologically twisted in order to preserve

some fraction of supersymmetry. Examples of duals of 4d gauge theories constructed in this

way are the geometries analyzed in [7] for N = 1 and in [8] for N = 2, which correspond

to D5-branes wrapping a two-cycle inside a Calabi-Yau (CY) manifold.

In this paper we will study the dual of N = 4 gauge theories in three space-time

dimensions, obtained by wrapping D4-branes of the type IIA theory on a two-cycle of a

Calabi-Yau two-fold. The corresponding unflavored supergravity solution was found in [9]

and studied in detail in [10], where it was shown to reproduce the exact perturbative

running coupling constant and the metric of the moduli space of the gauge theory. In

the present paper we will analyze the addition of flavor branes in this setup. These flavor

branes are also D4-branes, which are extended along non-compact directions of the CY

two-fold in such a way that no further supersymmetry is broken.
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We will analyze the addition of flavor to the 3d, N = 4 theory both in the quenched

and unquenched approaches. In the quenched formalism we will compute numerically the

spectrum of mesonic excitations and we will be able to find a very good analytical estimate

of the masses. We will also study the Wilson loops and the corresponding quark-antiquark

potentials. In this latter case we will discover that a phase transition is produced when

some of the parameters of the solution are varied and we will compute the corresponding

critical exponents.

We will include the backreaction by following the proposal of ref. [11], in which the

localized brane sources are substituted by a continuous distribution of flavor branes in their

transverse directions (see also [12] for a similar analysis in the context of non-critical string

theory). This smearing brane approach has been applied successfully to various string duals

in several dimensions ([13]–[25]). It has the advantage that it avoids having the δ-function

sources of the localized branes in the BPS equations and, therefore, makes searching for

solutions more feasible.

In our case we will start with the same ansatz for the metric as in the unflavored

system. However, the presence of flavor branes modifies the Bianchi identity of the RR

field strength F4, which forces us to modify the unflavored ansatz for F4. Once this fact is

taken into account, one can get a system of first-order differential equations by imposing

that the supersymmetric variation of the gravitino and dilatino of type IIA supergravity

vanish. These first-order equations are simple, but they are difficult to solve in general.

However, we will see that they can be solved analytically in certain regions of the space.

Remarkably, this is enough to compute the modification of the running of the coupling

constant due to the matter hypermultiplets in the gravity solution. We will show that this

modification matches exactly the field theory results.

The organization of the rest of this paper is the following. We will start in section 2

by reviewing the unflavored background. We will set up our notations and write the

BPS equations and their solution for the unflavored system. In section 3 we study the

addition of flavor branes. In particular, we obtain the BPS equations for the backreacted

background, which are then numerically integrated. Section 4 is devoted to analyzing the

matching between our flavored background and its field theory dual. By means of a probe

calculation we verify that the running of the gauge coupling with flavor is reproduced by

our solution. We also discuss in this section how to realize the Higgs branch in our setup.

The analysis of the meson spectrum is the object of section 5. We study the mass levels

both in the quenched and unquenched solutions and we also consider the meson spectra

in the Higgs branch. In section 6 we explore the behavior of the Wilson loops. In our

study of the energy of the quark-antiquark pair we will find some critical phenomena and

we will evaluate the corresponding critical exponents. Section 7 is devoted to presenting

our conclusions and summarizing our results.

The paper is completed with several appendices. In appendix A we give details of

the derivation of the BPS equations for the general flavored system and we check that the

equations of motion of the system are satisfied if the BPS equations hold. In appendix B we

find the supersymmetric embeddings of D4-brane probes in our background. In appendix C

we find additional solutions of the unflavored equations and we obtain the background dual

– 3 –
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to a non-relativistic system that can be generated by deforming our solutions. Finally, in

appendix C we analyze the entanglement entropy for our model in the UV.

2. The unflavored background

Following the analysis of refs. [9] and [10], let us consider the background of type IIA

supergravity created by a stack of Nc D4-branes wrapped on a two-cycle C2 of a Calabi-

Yau cone of complex dimension two, according to the following brane setup

CY2

︷ ︸︸ ︷

R
1,2 S2 N2 R

3

D4 − − − © © · · · · ·

where S2 represents the directions of the two-cycle (which is topologically a two-sphere)

and N2 are the directions of the normal bundle to C2 . In the above setup a circle represents

wrapped directions, whereas the symbols “-” and “.” denote unwrapped worldvolume and

transverse directions respectively. We shall parameterize the cycle C2 by means of two

angular coordinates (θ̃, φ̃) with 0 ≤ θ̃ < π and 0 ≤ φ̃ < 2π and we will denote by σ

the radial coordinate of the CY cone which, together with an angular coordinate ψ, will

parameterize the normal bundle N2. Moreover, we shall choose a system of spherical

coordinates for the transverse R
3, r being the corresponding radial coordinate and (θ, φ)

the angular variables (0 ≤ θ < π, 0 ≤ φ < 2π). The concrete ansatz for the ten-dimensional

string frame metric we will adopt is the following:

ds2st = e2Φ
[

dx2
1,2 + ZR2

(

dθ̃2 + sin2 θ̃dφ̃2
)]

+

+e−2Φ

[
1

Z

(

dσ2 + σ2
(

dψ + cos θ̃dφ̃
)2

)

+ dr2 + r2
(
dθ2 + sin2 θdφ2

)
]

, (2.1)

where dx2
1,2 denotes the Minkowski metric in 2+1 dimensions and the range of ψ is 0 ≤ ψ <

2π. Notice that ψ is fibered over the (θ, φ) two-sphere. For convenience we have included

in (2.1) the radius R, given by:

R3 = 8πgsNc (α′)
3

2 , (2.2)

with gs and α′ being respectively the string coupling constant and the Regge slope. The

ansatz (2.1) contains two functions: Z, which controls the size of the cycle, and Φ, which

is the dilaton of the type IIA theory. Both of them should be considered as functions of

the two radial coordinates r and σ:

Φ = Φ(r, σ) , Z = Z(r, σ) . (2.3)

As in any other background generated by D4-branes, the ansatz should be endowed with

an RR four-form F4. Let C3 denote the corresponding three-form potential (F4 = dC3).

We shall adopt the following ansatz for C3:

C3 = − g ω2 ∧ (dψ + cos θ̃ dφ̃) , (2.4)
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where g(r, σ) is a new function and ω2 is the volume element of the (θ, φ) two-sphere:

ω2 = sin θ dθ ∧ dφ . (2.5)

The corresponding RR four-form field strength will be:

F4 = − (ġ dσ + g′ dr) ∧ ω2 ∧ (dψ + cos θ̃ dφ̃) + g ω̃2 ∧ ω2 , (2.6)

where we have denoted:
′ ≡ ∂r , ˙ ≡ ∂σ . (2.7)

We will require that our background preserves eight supersymmetries. which is the

appropriate number of SUSYs for a supergravity dual of N = 4 gauge theories in three

dimensions. As shown in detail in appendix A, the vanishing of the different components

of the supersymmetric variations of the gravitino and dilatino gives rise to a system of

first-order BPS equations for the functions Φ, Z and g entering our ansatz. This system

is the following:

g = −R2 r2 Z ′ , e−4Φ σ = R2 ZŻ
g′ = ,−4σ r2 e−4ΦΦ̇ , ġ = −σR−2 Z−2 e−4Φ g + 4σ r2 Z−1 e−4Φ Φ′ . (2.8)

It is interesting to notice that not all the equations in (2.8) are independent. Actually,

one can check that the equation for ġ in (2.8) can be obtained from the others. Moreover,

one can combine the different equations in (2.8) and get a single second-order PDE for the

function Z(r, σ), namely:

rZ
(

Ż − σ Z̈
)

= σ
(

r Ż2 + rZ ′′ + 2Z ′
)

. (2.9)

Notice that, if Z is known, the other functions Φ and g can be determined from the first

two equations in (2.8). Moreover, we check in appendix A that the second order equations

of motion for the RR four-form F4, dilaton Φ and the metric GMN of type IIA supergravity

follow from the system (2.8).

2.1 Integration of the BPS system

The BPS system (2.8) can be integrated by elementary methods when σ = 0 and r varies.

Indeed, it follows from the last line in (2.8) that g(r, σ = 0) is constant. Let us put:

g(r, σ = 0) = g0 . (2.10)

Then, the first equation in (2.8) for σ = 0 can be readily integrated, namely:

Z ′(r, 0) = − g0
r2R2

⇒ Z(r, 0) =
g0
r R2

+ constant . (2.11)

The actual value of g0 can be obtained from the quantization condition of the RR four-form

flux F4. Actually, the best way to perform this analysis is by using the approach in which

the solution is obtained by uplifting from gauged supergravity. This study was done in

refs. [9, 10] and allows one to find a solution of the system (2.8) for arbitrary values of the

– 5 –
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variables r and σ. Here we will just reproduce this solution with our notations. First of

all, let us define the function Γ(Z) as follows:

Γ(Z) ≡ Z∗ + 2(Z − Z∗) +
16κ

Z∗
(Z − Z∗)

2 , (2.12)

where Z∗ and κ are constants. Then, Z(r, σ) is determined implicitly as the solution of

the equation:

(Z∗ −Z)
[

r2 +
σ2

Γ(Z)

] 1

2

=
R

8
. (2.13)

We are able to solve this quartic equation in Z exactly, although we must be careful that

when we use this solution in the following we are always picking up the appropriate root.

For each value of r and σ it must be checked that the solution is real and less than Z∗.

Notice from (2.13) that Z∗ is just the constant value approached by Z in the UV, i.e. when

either r or σ is large. Moreover, g(r, σ) and Φ(r, σ) are given by:

g =
R2 (Z − Z∗) r3

r2 + Z
Γ2(Z) σ

2
, e−4Φ = R2 Z (Z∗ −Z )

[

r2 + Z
Γ2(Z)

σ2
]

Γ(Z)
. (2.14)

As a check of this solution, one can easily prove by taking derivatives of (2.12)–(2.13) that

the BPS system (2.8) is satisfied. Moreover, by taking σ = 0 in (2.13) one can verify that

Z(r, 0) is indeed of the form (2.11), with g0 being given by:

g0 = −R
3

8
. (2.15)

Using this result we can rewrite Z(r, 0) as:

Z(r, 0) = Z∗ − R

8 r
. (2.16)

Furthermore, by using (2.16) to evaluate the right-hand side of the second equation

in (2.14), one can obtain the value of the dilaton at σ = 0, namely:

e−4Φ(r,0) =
Z∗ − R

8r

Z∗ − R
4r + κ

4Z∗

R2

r2

R3

r3
. (2.17)

From the explicit expressions for Z and Φ written above one easily concludes that, when

r and σ are small enough, the supergravity solution is not valid because the function Z
becomes negative and/or the dilaton Φ becomes complex. This phenomenon is related to

the so-called enhançon mechanism [26] (see below). We can estimate the scale at which

this mechanism occurs by computing from (2.16) the value of r for which Z(r, 0) vanishes.

This determines the so-called enhançon radius re, given by:

re =
R

8Z∗
. (2.18)

Notice also that the sign of the right-hand side of (2.17) becomes negative for sufficiently

small r. Actually, the numerator in (2.17) changes its sign precisely at r = re , whereas
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the change of sign of the denominator depends on the value of the constant κ. Indeed, by

analyzing the discriminant of the quadratic function in the denominator of (2.17) one easily

concludes that this equation has no real roots for κ > 1/16. Thus in this case e−4Φ(r,0)

changes its sign precisely at the enhançon radius re. However, for κ < 1
16 this change of

sign occurs for larger values of r, namely for r = rH , where rH is given by:

rH =
(
1 +

√
1 − 16κ

)
re . (2.19)

Clearly, when κ ≤ 1/16 the space ends, at σ = 0, when r = rH ≥ re.

2.2 UV form of the metric

As mentioned above, it follows from (2.13) that the function Z approaches the constant

value Z = Z∗ as one moves into the UV region. Since the solution of the algebraic

equation (2.13) for Z(r, σ) is complicated, we can try to perform an expansion around this

constant value. Keeping the first non-trivial term, Z(r, σ) can be approximated by the

following expression:

Z(r, σ) ≈ Z∗ −
R

8

Z1/2
∗√

r2Z∗ + σ2
, (2.20)

while for the dilaton Φ we have:

e−4Φ(r,σ)
≈
R3

8

Z3/2
∗

[√
r2Z∗ + σ2

]3 . (2.21)

Notice that the expression for Z in (2.20) gives the exact result (2.16) for σ = 0. The above

analysis suggests that in the UV region the combination r2Z∗ + σ2 plays a significant role.

Having this in mind we define a new set of variables, u and α̂, as follows:

u =
√

r2Z∗ + σ2 & tan α̂ =
σ√Z∗r

with 0 < α̂ <
π

2
. (2.22)

The function Z as well as the dilaton generally depend on both coordinates, u and α̂, but

in the UV limit of large u the α̂ dependence disappears. Actually, their expressions when

u→ ∞ are:

Z → Z∗ & e−2Φ → Z3/4
∗

2
√

2

(
R

u

)3/2

. (2.23)

Using these values in the metric ansatz we end up with the following expression:

ds2UV ≈ 2
√

2

Z3/4
∗

( u

R

)3/2 [

dx2
1,2 + Z∗R

2dΩ̃2
2

]

+
1

2
√

2Z1/4
∗

(
R

u

)3/2

du2 +

+
1

2
√

2

R3/2

Z1/4
∗

u1/2
[

dα̂2 + cos2 α̂ dΩ2
2 + sin2 α̂ (dψ + cos θ̃ dφ̃)2

]

, (2.24)

where dΩ̃2
2 ≡ dθ̃2 + sin2 θ̃ dφ̃2 is the line element of the (θ̃, φ̃) two-sphere. In order to

interpret the meaning of the results just found, let us recall that, given a background

– 7 –
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of type IIA theory such as the one we are considering, one can generate a solution of

eleven-dimensional supergravity by uplifting the metric by means of the standard formula:

ds211 = e−
2

3
Φ ds210 + e

4

3
Φ (dz)2 , (2.25)

where z is the eleventh M-theory coordinate. We shall apply (2.25) to the ten-dimensional

UV metric and dilaton written in eqs. (2.24) and (2.23). After changing the radial variable

u by a new coordinate y, defined as:

y2 =
2R√Z∗

u , (2.26)

the resulting eleven-dimensional UV metric becomes:

ds211 ≈ y2

R2

[

dx2
1,3 + Z∗R

2 dΩ̃2
2

]

+ R2

(
dy

y

)2

+

+
R2

4

[

dα̂2 + cos2 α̂ dΩ2
2 + sin2 α̂ (dψ + cos θ̃ dφ̃)2

]

, (2.27)

where dx2
1,3 = dx2

1,2 +dz2. From (2.27) we conclude that the uplifted metric is of the form

AdS7 × S4, with the AdS7 having two of its directions compactified in a two-sphere and

with the S4 being fibered over this S2, Notice also that the radius of the AdS7 is just R,

whereas the S4 has radius R/2. These results are, of course, consistent with the origin of

the solution [9], as coming from M5 wrapped on a two-cycle.

3. Addition of flavor branes

In this section we will start exploring the possibility of finding the dual of the N = 4 3d

gauge theory with matter hypermultiplets in the fundamental representation of the gauge

group. We will achieve this by adding flavor branes to the setup of section 2. These flavor

branes will be D4-branes extended along the three Minkowski directions x0, x1 and x2 as

well as the ψ and σ directions of the Calabi-Yau. At the same time they will be located

at particular fixed values of the S2 sphere and of the transverse R
3, as represented in the

following array:

CY2

︷ ︸︸ ︷

R1,2 S2 N2 R3

Nc D4 (color) − − − © © · · · · ·
Nf D4 (flavor) − − − · · − − · · ·

It is worth pointing out that, in the above setup, the flavor branes wrap a non-compact

direction of the internal Calabi-Yau. This is, actually, a standard requirement which one

should demand of these kinds of setup in order to convert, in the appropriate decoupling

limit, the gauge symmetry living on the worldvolume of the flavor brane into a global

(flavor) symmetry.

– 8 –
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To describe more precisely the embedding of the flavor brane let us choose the following

system of worldvolume coordinates:

ξα = (x0, x1, x2, σ, ψ) . (3.1)

Then, the embedding is determined by the condition that all other remaining ten-

dimensional coordinates are constant. By analyzing the kappa symmetry of the worldvol-

ume action of the flavor brane we will explicitly check in appendix B that the embedding

just described preserves the same supersymmetry as the unflavored setup. Moreover, the

position in r of the flavor brane, rQ, represents the distance between the two sets of branes

and has a well-defined meaning in the gauge theory dual. Indeed, rQ is related to the mass

mQ of the matter hypermultiplet by means of the following relation:

mQ =
rQ

2πα′ . (3.2)

In the so-called quenched approximation the effects of the quark loops in the field

theory observables are neglected. This approximation is well justified when Nf ≪ Nc and

corresponds, on the gravity side, to treating the flavor branes as probes and neglecting

their influence on the metric. Later in this paper we will make use of this approximation

to study several aspects of the gauge theory, such as the meson spectrum and the quark-

antiquark potentials. However, in the remainder of this section we will analyze, in a certain

approximation, how the backreaction of the flavor branes modifies the solution described

in section 2.

3.1 Including the backreaction

Let us study the backreaction of the flavor branes on the background in the case in which

the number of flavors Nf is large and of the same order as the number of colors Nc. From

the field theory point of view this limit was considered a long time ago by Veneziano [6].

Here we will follow the approach pioneered in ref. [11], which is based on the observation

that, when Nf → ∞, one can homogeneously distribute the Nf flavor branes in their

transverse directions (for a clear discussion on the validity of the DBI+WZ action for a

large number of smeared branes, see section 7 of [21]). Notice that, when the branes are

embedded as explained around (3.1), they preserve the same supersymmetries independent

of their position in the transverse space. Actually, we will consider a distribution of branes

with a fixed value rQ of the r coordinate and smeared along the angular coordinates (θ, φ)

and (θ̃, φ̃). In order to figure out how this smearing is implemented, let us recall that the

action for a stack of Nf D4-branes is given by the sum of the DBI and WZ terms:

Sflavor = −T4

∑

Nf

∫

M5

d5ξ e−Φ

√

− det Ĝ5 + T4

∑

Nf

∫

M5

Ĉ5 , (3.3)

with Ĝ5 being the induced metric on the worldvolume and Ĉ5 the pullback of the RR

four-form potential to M5. The smearing procedure amounts to promoting the infinite

– 9 –
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sum appearing in the action to a ten-dimensional integral. For the WZ part we have:

∑

Nf

∫

M5

Ĉ5 →
∫

M10

Ω ∧ C5 , (3.4)

where Ω is a five-form proportional to the volume form of the transverse space, namely:

Ω =
Nf

16π2
δ(r − rQ) dr ∧ ω2 ∧ ω̃2 , (3.5)

with ω2 being given by (2.5) and ω̃2 = sin θ̃dθ̃∧dφ̃. The smearing form Ω is normalized as:

∫

Ω = Nf . (3.6)

Similarly, to obtain the smeared version of the DBI part of the flavor brane action we

perform the substitution:

∑

Nf

∫

M5

d5ξ e−Φ

√

− det Ĝ5 →
∫

M10

d10x e−Φ
√
− detG

∣
∣ Ω

∣
∣ , (3.7)

where
∣
∣ Ω

∣
∣ is the modulus of Ω:

∣
∣
∣ Ω

∣
∣
∣ =

√
√
√
√

1

5!
ΩM1···M5

ΩN1···N5

5∏

k=1

GMkNk . (3.8)

Therefore, the smeared DBI+WZ action of the flavor branes is:

Sflavor = −T4

∫

M10

d10x e−Φ
√
− detG

∣
∣ Ω

∣
∣ + T4

∫

M10

Ω ∧ C5 . (3.9)

By inspecting the WZ term in the action (3.9) one readily concludes that the flavor brane

acts as a source for the RR six-form F6 = dC5 which, in turn, induces a violation of

the Bianchi identity of F4 = ∗F6. Actually, one can prove that this modified Bianchi

identity becomes:

dF4 = 2κ2
10 T4 Ω =

Nf

2Nc

R3

8
δ(r − rQ) dr ∧ ω2 ∧ ω̃2 , (3.10)

where, in the last step, we have used that 2κ2
10 = (2π)7 g2

s (α′)4 and T4 = 1/(2π)4gs(α
′)

5

2

and, thus, 2κ2
10 = π2R3/Nc.

Let us now formulate a new ansatz for this backreacted flavored setup. First of all,

we will adopt the same ansatz (2.1) for the ten-dimensional metric. However, as is clear

from (3.10), we should change the ansatz for F4 in order to reproduce the modified Bianchi

identity. Actually, the natural ansatz both satisfying (3.10) and generalizing (2.6) is:

F4 = − (ġ dσ+ g′ dr)∧ω2 ∧ (dψ+cos θ̃ dφ̃) +

(

g +
Nf

2Nc

R3

8
Θ(r − rQ)

)

ω̃2 ∧ ω2 , (3.11)
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where Θ is the Heaviside step function. Proceeding as in the unflavored case and substi-

tuting the new ansatz (3.11) for F4 into the equations for the supersymmetric variations

of dilatino and gravitino we have:

[

g +
Nf

2Nc

R3

8
Θ(r − rQ)

]

= − R2 r2 Z ′ ,

e−4Φ σ = R2 ZŻ ,

g′ = −4σ r2 e−4φΦ̇ ,

ġ = −σ R−2 Z−2 e−4Φ

[

g +
Nf

2Nc

R3

8
Θ(r − rQ)

]

+ 4σ r2 Z−1 e−4φ Φ′ . (3.12)

The set of projections on the Killing spinors needed to arrive at (3.12) is the same as in the

unflavored case. Thus, the flavored solutions preserve also the same eight supersymmetries

as the unflavored ones. Moreover, as in (2.8), the last equation in the system (3.12) is

not independent of the others. One can also verify (see appendix A) that the equations

of motion of F4 and the metric (including the contribution of the DBI action to Einstein’s

equations) are satisfied if the system (3.12) holds. The analogue of the PDE (2.9) for the

flavored case is:

r2 Z
(

Ż − σ Z̈
)

= r σ
(

r Ż2 + rZ ′′ + 2Z ′
)

+ σ
Nf

2Nc

R3

8
δ(r − rQ). (3.13)

As in the unflavored case, we can integrate the function Z for σ = 0. Indeed, it follows

from (3.12) that g is independent of r when the variable σ vanishes. If we call g0 this

constant value of g then, for r > rQ, we have:

Z ′(r, 0) = − 1

R2

[

g0 +
Nf

2Nc

R3

8

]
1

r2
, (r > rQ) , (3.14)

and after using for g0 the same value as in the unflavored case, we get:

Z ′(r, 0) =
R

8 r2

[

1 − Nf

2Nc

]

, (r > rQ) . (3.15)

When r < rQ, by simply putting Nf = 0 on the right-hand side of (3.15), we recover the

unflavored result. Integrating (3.15) and imposing continuity for the solution along r = rQ
we have:

Z(r, 0) = Z∗ − R

8 rQ

Nf

2Nc
Θ(r − rQ) − R

8 r

[

1 − Nf

2Nc
Θ(r − rQ)

]

, (3.16)

where the constant Z∗ is the same as in (2.16). We have not been able to obtain analytically

the solution of the flavored system (3.12) for arbitrary values of r and σ. Instead, one can

integrate numerically this system of equations. Since the system (3.12) reduces to the

unflavored one written in (2.8), we can assume that the solution of (3.12) reduces to the
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Figure 1: Solutions for Z for different values of x =
Nf

Nc
as a function of r and σ. These curves

correspond to κ = Z∗ = 1 and rQ = 5.

one written in (2.12)–(2.14) for r < rQ, while at r = rQ the functions Z, g and Φ are

continuous and Z ′ has a discontinuity independent of σ and given by:

Z ′(rQ + ǫ, σ) − Z ′(rQ − ǫ, σ) = − R

8r2Q

Nf

2Nc
. (3.17)

Using the continuity and change in derivative of Z at r = rQ and 3.16 as the boundary

conditions, we are able to numerically integrate the equation of motion for Z up to a finite

value of r after which the solution becomes highly oscillatory and unstable. The result of

the numerical integration for Z(r, σ) is shown in figure 3.1 for several values of Nc and

Nf . It is quite evident from figure 3.1 that Z has a wedge shape at the position r = rQ
of the flavor branes. This means that there will be a curvature singularity at this point,

which is actually needed to match a similar term in the Einstein equations coming from

the energy-momentum tensor of the flavor brane sources. As in the unflavored case, the

geometry is also singular in the IR due to the enhançon phenomenon. Outside these regions

the metric is regular and one can verify that the components of the Ricci tensor depend on

Nc and Nf through the combination Nc − Nf
2 , which scales as Nc in the Veneziano limit

Nc, Nf → ∞ with Nc/Nf fixed. Thus, outside the location of the source, the region in

which the supergravity approximation is valid is not modified by the backreaction of the

flavor branes, as happened in the backgrounds of refs. [11, 15, 22].
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4. Connection with gauge theory

The N = 4 three-dimensional gauge theories can be regarded as the reduction to three

dimensions of the N = 2 gauge theories in four dimensions [27]. The field content of the

different 3d supermultiplets can be easily obtained by dimensional reduction of the one

corresponding to N = 2, d = 4. Let us consider, for example, the vector multiplet which,

in four dimensions is composed by a vector field, a Dirac spinor and a complex scalar. By

reducing to three dimensions one gets one vector, two Dirac fermions and three scalars.

Similarly, one can verify that the N = 2, d = 3 hypermultiplet contains two Dirac fermions

and four complex scalars. Given this field content it is straightforward to find the one

loop running coupling constant gYM(µ) of the theory (see, for example, the appendix C

of [10]). Indeed, let us consider a SU(Nc) gauge theory with Nf matter hypermultiplets in

the fundamental representation. Then, one can show that:

1

g2
YM(µ)

=
1

g2
YM

[

1 − g2
YMNc

4πµ

(

1 − Nf

2Nc

) ]

, (4.1)

where µ is the energy scale. The one-loop result displayed in eq. (4.1) is, actually, exact

in perturbation theory. Notice that (4.1) shows that the N = 4 theory has negative beta

function when Nf < 2Nc, while for Nf > 2Nc the beta function changes its sign and

becomes positive. In the borderline case Nf = 2Nc the one-loop beta function vanishes

and the coupling does not run anymore in perturbation theory. In the next subsection

we will show that our gravity solutions match perfectly the behavior (4.1), both in the

unflavored and backreacted flavored cases.

Besides the perturbative result just reviewed, the N = 4 3d theories have a very

rich non-perturbative structure. Indeed, the Coulomb branch of vacua of these theories

is a hyperkähler manifold, which is isomorphic to the moduli space of three-dimensional

monopole solutions of a different gauge theory [27, 28]. Moreover, the Higgs branch is also

a hyperkähler manifold. Furthermore, these theories display the phenomenon of mirror

symmetry [29, 30], which is a duality between two different N = 4 3d gauge theories which

exchanges the Higgs and Coulomb branches, as well as the Fayet-Iliopoulos and mass terms.

When these N = 4 theories are realized in the type IIB string theory as in [28], the mirror

symmetry is just a manifestation of the underlying S-duality of the type IIB string theory

(see ref. [31] for a review).

4.1 Probe calculation

In order to extract information about the gauge theory living on the D4-branes, we will

study, following ref. [10], the dynamics of a color D4-brane probe wrapping an S2 and

moving under the influence of the metric and RR form of the background. The action of

such a probe will be:

S = −T4

∫

d5ξ e−Φ
√

− det( Ĝ5 + 2πα′ F ) + T4

∫ (

Ĉ5 + 2πα′ Ĉ3 ∧ F
)

, (4.2)

where ξa (a = 0, · · · , 4) is the set of worldvolume coordinates along which the color D4-

brane is extended, F is the field strength for the worldvolume gauge field and the hat over
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G5, C5 and C3 denotes the pullback over the worldvolume of the D4-brane. In particular,

let us evaluate the action (4.2) in the case in which the ten-dimensional metric is of the

form (2.1). Let us choose the worldvolume coordinates as ξa = (x0, x1, x2, θ̃, φ̃) and let

us assume that the brane in embedded in such a way that the remaining ten-dimensional

coordinates are constant and the worldvolume gauge field F is zero. Then, the determinant

of the induced metric for such a configuration takes the form:

e−Φ

√

− det Ĝ5 = R2 Z e4Φ sin θ̃

√

1 + σ2
cot2 θ̃

R2 Z2 e4Φ
. (4.3)

For the configuration we are considering, the only non-vanishing contribution to the WZ

part in (4.2) is the term containing C5. The expression of this five-form potential for our

solutions has been evaluated in appendix A (eq. (A.9)). The corresponding pullback to the

D4-brane worldvolume is:

Ĉ5 = R2 Z e4Φ sin θ̃ dx0 ∧ dx1 ∧ dx2 ∧ dθ̃ ∧ dφ̃ . (4.4)

Let us now substitute (4.3) and (4.4) into (4.2). The result is just minus the static potential

between the stack of Nc color branes and the probe, namely:

Spot = −T4

∫

d3x dθ̃dφ̃ R2 Z e4Φ sin θ̃

[√

1 + σ2
cot2 θ̃

R2 Z2 e4Φ
− 1

]

. (4.5)

Notice that the right-hand side of (4.5) only vanishes when σ = 0, which should be inter-

preted as the point of the Calabi-Yau in which one can place a color brane without breaking

supersymmetry. Actually, one can check this statement directly by studying the implemen-

tation of kappa symmetry for the different D4-brane embeddings (see subsection 4.2 and

appendix B). Let us thus assume that our probe brane is located at σ = 0 and that we

switch on a worldvolume gauge field Fµν whose only non-vanishing components are those

along the Minkowski directions xµ. We will expand the DBI lagrangian density (integrated

over the angular directions θ̃ and φ̃) up to quadratic order in the gauge field Fµν . The

result of this expansion can be parameterized as:

∫

dθ̃dφ̃LDBI

∣
∣
∣
quadratic

= − 1

2 g2
YM(µ)

tr[FµνF
µν ] , (4.6)

where gYM(µ) is, by definition, the Yang-Mills coupling at the renormalization scale µ.

Actually, by performing explicitly the calculation, one gets:

1

g2
YM(µ)

=
R2

2πgs(α′)1/2
Z(r, σ = 0) . (4.7)

Clearly, the variable r should be related to the energy scale µ of the field theory. The

natural radius-energy relation is given by:

r = 2π α′ µ , (4.8)
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which we will assume to hold in the following. Let us now suppose that r > rQ or,

equivalently, that µ > mQ, where mQ has been defined in (3.2). After substituting in (4.7)

the value of Z(r, σ = 0) as given by (3.16) for the general flavored solution we have:

1

g2
YM(µ)

=
Z∗R2

2π gs (α′)1/2
− Nf

8πmQ
− Nc

4π µ

(

1 − Nf

2Nc

)

. (4.9)

Moreover, by defining the bare UV YM coupling as:

1

g2
YM

=
Z∗R2

2π gs (α′)1/2
− Nf

8πmQ
, (4.10)

we get that eq. (4.9) matches perfectly the field theory expression (4.1). Moreover, by

allowing the brane probe to move in the transverse flat space, and by looking at the action

of the transverse scalar fields obtained by expanding the DBI+WZ action, one can obtain

the metric of the moduli space in the Coulomb branch. After dualizing the worldvolume

gauge field one can check that the moduli space is indeed hyperkähler and, actually, its

metric has the form of the Taub-NUT space [10].

4.2 Higgs branch

The Higgs branch of the N = 4 gauge theory is a phase in which the quark hypermulti-

plets acquire a non-vanishing expectation value. On the field theory side one can study

the theory in the Higgs branch by turning on an extra Fayet-Ilioupoulos coupling in the

lagrangian. The realization of this mechanism in a brane setup is well-known [28] (see [31]

for a review). Indeed, as argued in ref. [28], one should reconnect the color and flavor

branes in a supersymmetric way. In our holographic setup we should look for D4-brane

embeddings which are compatible with all the supersymmetries of the gravity solution and

such that they can be interpreted as representing a recombination of color and flavor branes

(see [22, 32, 33] for a similar analysis in other brane setups). Recall that both types of

D4-branes are extended along different directions of the Calabi-Yau cone. Indeed, the color

branes are extended along (θ̃, φ̃) at σ = 0 while the flavor branes extend along (σ, ψ) at

fixed angles (θ̃, φ̃). In order to find a configuration interpolating between these two situa-

tions it is natural to use the same system of worldvolume coordinates as in (3.1) and look

for an embedding such that θ̃ and φ̃ are no longer constant. Instead, they will depend on

the other coordinates of the CY2, namely:

θ̃ = θ̃(σ, ψ) , φ̃ = φ̃(σ, ψ) . (4.11)

In order to determine the D4-brane embeddings of the form (4.11) which preserve the

supersymmetries of the background, one has to study the kappa symmetry of the brane

probe. This analysis is performed in detail in appendix B. The final result found in this

appendix can be nicely recast in terms of the following two complex coordinates of the

CY2:

ζ1 ≡ tan

(
θ̃

2

)

eiφ̃ , ζ2 ≡ σ sin θ̃ e−iψ . (4.12)
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It turns out that any holomorphic embedding of the type ζ1 = f(ζ2), with f arbitrary, solves

the kappa symmetry equations and, thus, preserves the supersymmetry of the background.

In order to make contact with the field theory analysis, it is rather natural to restrict

ourselves to embeddings characterized by a polynomial equation of the type:

ζp11 ζp22 = C , (4.13)

with C being a (complex) constant and the exponents p1 and p2 are constant integers.

Notice that, in the Coulomb branch, the embedding of the color branes correspond to

eq. (4.13) with p1 = 0, p2 = 1 (and C = 0), while that of the flavor brane is given by

p1 = 1, p2 = 0. It is thus natural to think that the Higgs branch embedding we are seeking

is the one obtained by taking p1 = 1, p2 = 1 in (4.13). Notice that, in this case, the

functions (4.11) are just given by:

sin2

(
θ̃

2

)

=
σ∗
σ
, φ̃ = ψ + ψ̃0 , (4.14)

where σ∗ and ψ̃0 are constants (related to C in (4.13)). Notice that σ∗ is just the minimal

value of the coordinate σ (which occurs for θ̃ = π) which should correspond, in the field

theory side, to the Higgs VEV.

5. Meson spectrum

In this section we analyze the mass spectrum of the mesonic excitations for the backgrounds

of sections 2 and 3. In order to address this question we will add a flavor D4-brane probe

to these backgrounds and we will study the normalizable fluctuations of its worldvolume

fields. This analysis will lead us to a problem of the Sturm-Liouville type with a discrete

set of eigenfunctions and eigenvalues.

Let us consider a flavor D4-brane in a geometry of the form (2.1). We will choose the

system (3.1) of worldvolume coordinates and we will consider an embedding in which the

radial coordinate r and the angular coordinates θ, φ, θ̃ and φ̃ are constants. Let us denote

by rq the constant value of r for this configuration (rq is related to the mass mq of the

external quarks as in (3.2), i.e. mq = rq/2πα
′). The induced metric for such a configuration

is:

Gab dξa dξb = e2Φ(rq ,σ) dx2
1,2 +

e−2Φ(rq ,σ)

Z(rq, σ)

[

dσ2 + σ2 (dψ)2
]

. (5.1)

Let us now perturb this static configuration by deforming it in the radial direction as:

r = rq + r̂(xµ, σ, ψ) , (5.2)

where the fluctuation r̂ is small. In all the calculations of this section we will take rq such

that the r = rq surface does not enter the enhançon region and, thus, σ = 0 is the minimal

value of the coordinate σ in the worldvolume. This can always be achieved by taking rq
sufficiently large.

Of course, the perturbation (5.2) is not the most general one. However, one can check

that, at quadratic order, r̂ does not mix with other fluctuations and, therefore, it can be
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studied separately. By expanding the corresponding DBI+WZ action 1 one can verify that,

up to quadratic terms, one gets that the lagrangian density for r̂ is:

L = −T4

2
e−3Φ

√
− detG Gab ∂a r̂ ∂b r̂ = −T4

2

[
σ

e4ΦZ (∂xµ r̂)
2 + σ(∂σ r̂)

2 +
1

σ
(∂ψ r̂)

2

]

,

(5.3)

where Φ and Z should be understood as functions of σ at r = rq. The equation derived

from the lagrangian (5.3) is given by:

∂σ
[
σ∂σ r̂

]
+

σ

e4ΦZ ∂2
xµ r̂ +

1

σ
∂2
ψ r̂ = 0 . (5.4)

To find the solutions of this equation, let us separate variables as:

r̂ = χ(σ) eikx eilψ , (5.5)

where l is an integer (which can be taken to be non-negative without loss of generality)

and k is a momentum along the Minkowski directions xµ. Let us also define M2 as M2 ≡
−k2, where the square is computed with the flat Minkowski metric in 2 + 1 dimensions.

Plugging (5.5) into (5.4), we arrive at the following equation for χ(σ):

∂σ
[
σ∂σχ

]
+

[
σ

e4ΦZ M2 − l2

σ

]

χ = 0 . (5.6)

Interestingly, by means of a suitable change of variables, the fluctuation equation (5.6) can

be written as a Schrödinger equation. Indeed, let us define the variable y as follows:

ey = σ . (5.7)

Notice that y ∈ (−∞,+∞). In terms of y, the equation (5.6) of the fluctuations can be

written as:
d2χ

dy2
− V (y)χ = 0 , (5.8)

where the potential V (y) is given by:

V (y) = l2 − M2 e2y

e4ΦZ . (5.9)

From the reformulation of eqs. (5.8) and (5.9) of the fluctuation equation, one can easily

obtain the asymptotic value of χ when y → ±∞. Indeed, from the behavior of Φ(rq, σ)

and Z(rq, σ) when σ → 0,∞ one easily gets that V → l2 when y → ±∞. It follows that,

in these asymptotic regions, the two independent solutions of (5.8) when l 6= 0 are just

χ ∼ e±ly = σ±l (when l = 0 these solutions behave as χ = constant, log σ when σ → 0,∞).

The normalizable solutions, which can be identified with mesonic excitations, are those

that are regular as σ = 0,∞. These solutions only exist for some discrete set of values

1One should take into account that, due to the different signs in the two projections in (A.4), the WZ

coupling of the RR potential C5 for the flavor brane must be opposite to the one appearing in (4.2).
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of the mass M , which can be determined numerically by means of the shooting technique

(see below).

The previous analysis only applies to the particular fluctuation r̂ in the radial direction

of the transverse R
3. However, one can check that the same equation (5.6) describes the

fluctuations of the other two R
3 coordinates θ̃ and φ̃. Furthermore, in order to study the

fluctuations of the coordinates θ̃ and φ̃ that determine the position of the flavor brane in

the CY2, let us write:

θ̃ = θ̃0 + θ̂(xµ, ψ, σ) , φ̃ = φ̃0 + φ̂(xµ, ψ, σ) , (5.10)

where θ̃0 and φ̃0 are the constant unperturbed values of the angles θ̃ and φ̃. By plug-

ging (5.10) into the DBI+WZ action and expanding the result up to quadratic order in

the fluctuations one gets a lagrangian in which θ̂ and φ̂ are coupled. It turns out that, as

happened in refs. [15] and [22], they can be easily decoupled by defining new fields χ+(σ)

and χ−(σ) as follows:

θ̂ =
1

2

(

χ+(σ) + χ−(σ)
)

sin θ0 e
ikx sin(lψ) ,

φ̂ =
1

2

(

χ+(σ) − χ−(σ)
)

eikx cos(lψ) , (5.11)

where l is a non-negative integer. One can verify that, indeed, χ+(σ) and χ−(σ) satisfy two

different decoupled equations. Actually, it is possible to perform a further redefinition to

the functions χ± in such a way that the new functions satisfy the scalar fluctuation equa-

tion (5.6). Similarly, one can show, as in ref. [15], that the fluctuations of the worldvolume

gauge field also satisfy (5.6). These facts imply that, up to finite shifts in the quantum

numbers, all fluctuation equations lead to the same set of eigenvalues, as expected from

supersymmetry. Therefore, one can concentrate on studying the basic equation (5.6). This

is what we will do in the next two subsections.

5.1 Quenched mesons in the Coulomb branch

Let us specialize the previous analysis to the case in which the background geometry is the

unflavored one of section 2 and we add a flavor D4-brane probe. In this case the function

Z and the dilaton Φ are given by eqs. (2.13) and (2.14) respectively. The numerical results

obtained by means of the shooting technique are shown in figure 2. In general, for given rq
and l, one obtains a tower of discrete normalizable states labelled by a principal quantum

number n. It is interesting to notice that, for fixed n and l, the masses grow with rq as

M2 ∼ rq.

One can get a rather accurate estimate of the mass spectrum by applying the semi-

classical WKB method to the Schrödinger problem (5.8) (see refs. [34]–[37]). By applying

this method to our particular case, we get the following mass formula:

M2
WKB =

π2

[
ζ(rq)

]2 (n+ 1)(n + 3l) , (5.12)
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Figure 2: Mass eigenvalues from the improved WKB formula (eq. 5.16) (dots) and from the

numerical calculation (solid line). The numerical calculation has been performed with the unflavored

background with κ = Z∗ = 1.

where n is a non-negative integer (n ≥ 0 when l 6= 0 and n ≥ 1 for l = 0). In eq. (5.12)

ζ(rq) is the following integral:

ζ(rq) =

∫ +∞

0

dσ
√

e4Φ(rq ,σ) Z(rq, σ)
. (5.13)

Notice that ζ(rq) determines the mass gap of the mesonic spectrum. One can get an

approximate expression for ζ(rq) by using inside the integral on the right-hand side of (5.13)

our asymptotic expressions (2.20) and (2.21). By doing so one arrives at the following

analytic expression for ζ(rq):

ζ(rq) ≈
√

R3

8
Z

1

4∗

∫ +∞

0

dσ

(σ2 + Z∗ r2q)
3

4

=

√

π3R3

16

1
[

Γ
(

3
4

)]2

1
√
rq

. (5.14)

It is interesting to stress that, within this approximation, ζ(rq) is independent of Z∗.

Actually, by using the value of R written in (2.2), as well as the relation between rq
and the quark mass mq (see (3.2)), one can write the following WKB formula for the

meson masses:

M2
WKB =

4
[

Γ
(

3
4

)]4
mq

π gsNc

√
α′

(

n+ 1
) (

n+ 3l
)

. (5.15)
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Figure 3: Variation of the meson spectrum calculated on a probe brane at rq = 5 with backreacting

flavor branes at varying positions rQ. The four lines on each plot correspond to Nf/Nc = 1 (flattest

line), Nf/Nc = 2, Nf/Nc = 5 and Nf/Nc = 10 (least flat line). It is clear to see that each of these

return to the quenched case in the case where the backreacting branes lie close to the probe brane.

All calculations have been done for κ = Z∗ = 1.

This formula reproduces rather well the numerical values of the masses for l = 0, 1 and,

actually, captures accurately the meson mass gap and its dependence on the quark massmq.

However, the degeneracies observed in the numerical results when one varies the quantum

numbers n and l are not reproduced by (5.15). Nevertheless we found that the numerical

results are fully recovered if (5.15) is changed to:

M2 =
4
[

Γ
(

3
4

)]4
mq

π gsNc

√
α′

(

n+ l
) (

n+ 2l + 1
)

. (5.16)

The comparison between the predictions of (5.16) and the numerical values of the masses

is shown in figure 2. It follows from the inspection of this figure that (5.16) provides a very

good fit of the masses found by the shooting technique.

5.2 Unquenched mesons in the Coulomb branch

We can perform the analysis of the meson spectrum by looking at the fluctuations of a

flavor brane probe in the background given by the backreacted flavor branes. This is

equivalent to studying the fluctuations of a single quenched flavor in the presence of Nf

unquenched flavors. In the large Nf limit this should be an accurate approximation. What

is interesting to note here is that because the functions Z and Φ are themselves continuous

in r and are being taken at the value r = rq, the eigenvalues for a flavor probe at this

position will be exactly the same as that for a probe without the backreacted flavor.

Thus, by inspection we see from the form of the equations of motion for the probe

brane fluctuations that the spectrum will be identical in the flavored and unflavored case if

the probe brane is placed at the same position as the backreacting branes. The difference

between the quenched and unquenched case will only be felt if we introduce a finite distance

between the probe and backreacting branes, corresponding to Higgsing a U(1) of the U(Nf )

flavor group.

The case where the probe and backreacting branes are separated is considerably more

complicated, computationally, because in order to calculate the meson spectrum it is vital

– 20 –



J
H
E
P
0
2
(
2
0
0
9
)
0
0
1

to have a numerically stable geometry. The calculation of the function Z from the partial

differential equation is inherently an unstable calculation and therefore the calculation of

the spectrum is difficult. We have however managed to calculate the spectrum in a narrow

range of parameter space where the probe and backreacting branes are not very far apart.

In figure 3 we study the effects of placing the backreacting branes at a variable position,

given by rQ while always keeping the position of the probe brane at rq = 5. On each graph

the lines correspond to Nf/Nc = 10, Nf/Nc = 5, Nf/Nc = 2 and Nf/Nc = 1. Clearly the

Nf/Nc = 1 line is the flattest in each case and the Nf/Nc = 10 line has the most variation,

as expected as the geometry is most altered with a higher ratio of flavor branes to color

branes. We have checked that the curves in figure 3 can be fitted to an expression of the

type M2 = a + Nf b
( rQ
rq

− 1
)4

, where a and b are coefficients that are independent of Nf .

5.3 Mesons in the Higgs branch

We will now consider the fluctuations around a non-trivial embedding of the type studied in

subsection 4.2 (eq. (4.13)). Recall that we argued in this subsection that these embeddings

correspond to configuration in which both types of D4-branes (color and flavor) are recom-

bined, realizing the Higgs branch in our brane setup. More concretely, we will concentrate

on studying the embedding (4.13) for p1 = p2 = 1, which can be rewritten as in (4.14).

We will continue to use (3.1) as our system of worldvolume coordinates but now θ̃ and φ̃

will no longer be constant but given by the functions displayed in (4.14). For simplicity we

will restrict ourselves to studying the fluctuations of the radial coordinate r around a fixed

value rq (see eq. (5.2)). After separating variables as in (5.5) the fluctuations equation can

be written in the Schrödinger form (5.8), if we introduce a new variable y as:

ey = σ − σ∗ , −∞ < y < +∞ , (5.17)

where σ∗ is the minimal value of the coordinate σ for the embedding (see eq. (4.14)). Recall

that σ∗ parameterizes the Higgs VEV. The Schrödinger potential V is now given by:

V =
l2

4
− M2

[

e2y

e4Φ Z + σ∗R
2 ey Z

(ey + σ∗)2

]

. (5.18)

Note here that in the limit l → 2l and σ⋆ → 0 we recover the Coulomb branch potential.

However, one can check that this limit is not continuous and the last term in (5.18) means

that the Coulomb spectrum is never recovered taking this limit in the Higgs branch.

In order to have an idea of the mass spectrum associated to the potential (5.18), let us

apply the WKB method. The mass gap is now determined by an integral similar to (5.13),

which is now given by:

ζ(rq, σ∗) =

∫ ∞

σ∗

dσ

√

1

e4Φ(rq ,σ) Z(rq, σ)
+ σ∗R2

Z(rq, σ)

σ2 (σ − σ∗)
. (5.19)

When σ∗ is not very small the second term inside the square root in (5.19) dominates the

integral. Actually, by applying the same approximations that led to (5.14), one arrives at

the following approximate expression for ζ(rq, σ∗):

ζ(rq, σ∗) ≈ π R
√

Z∗ . (5.20)
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Notice that ζ in (5.20) is independent of rq and σ∗ and only depends on the asymptotic

value of Z∗. Actually, after improving the WKB formula as in (5.16), we arrive at the

approximate formula for the mass levels in the Higgs branch:

M2
Higgs ≈ 1

R2 Z∗

(
n+ l

) (
n+ l + 1

)
, (5.21)

which reproduces rather well the numerical values.

6. Wilson loops and the qq̄ potential

In order to investigate the unflavored background more, we now turn to another direction

of a more phenomenological nature, the Wilson loop operator. On the gravity side, the

Wilson loop expectation value is calculated by minimizing the Nambu-Goto action for a

fundamental string stretching into the dual supergravity background, whose endpoints are

constrained to lie on the two sides of the Wilson loop. Below, we first briefly review the

procedure for calculating Wilson loops in supergravity. We will discover that the qualitative

behavior of this observable critically depends on whether the constant κ, appearing in the

function (2.12), is smaller or larger than 1/16. We will discuss these two cases separately

in two different subsections.

6.1 General formalism

As stated above, the calculation of a Wilson loop in the gravity approach amounts to

extremizing the Nambu-Goto action for a string propagating in the dual geometry whose

endpoints trace the loop. To describe such configuration in our setup let us choose the

time t and a Minkowski coordinate x as worldvolume coordinates of the string and let us

consider the trajectory with:

r = r(x) , σ = 0 , rest = constant . (6.1)

Then, the induced metric on the string worldvolume can be easily found from (2.1), namely:

e2Φ(r,0)
[
− dt2 + (1 + e−4Φ(r,0) r′ 2) dx2

]
, (6.2)

with Φ(r, 0) being given by (2.17), which we can rewrite in terms of the enhançon radius

re defined in (2.18) as:

e4Φ(r,0) =
1

reR2Z∗

r2
(
r2 − 2rre + 16κ r2e

)

r − re
. (6.3)

The Nambu-Goto action for the configuration (6.1) is:

S =
1

2π

∫

dt dx
√

e4Φ(r,0) + r′2 , (6.4)

where we have taken α′ = 1 and the prime denotes a derivative with respect to x. Since

the action does not explicitly depend on x, the system has a first integral r0, which can
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Figure 4: Effective tension of the string as a function of r. On the left is the case with κ ≤ 1/16

and on the right with κ > 1/16.

be identified with the turning point of the solution. Solving the corresponding first-order

equation for x in terms of r we find that the linear separation of the quark and antiquark

is:

L = 2

∫ ∞

r0

dr
e2Φ(r0,0)

e2Φ(r,0)
√

e4Φ(r,0) − e4Φ(r0,0)
. (6.5)

The energy of the configuration can be obtained from the action (6.4). Subtracting the

self-energy contribution, we obtain

E =
1

π

∫ ∞

r0

dr
e2Φ(r0,0)

√

e4Φ(r,0) − e4Φ(r0,0)
− 1

π

∫ ∞

rmin

dr , (6.6)

where rmin is the minimum value of r allowed by the geometry. In the specific cases, we

are supposed to solve for the auxiliary parameter r0 in terms of the separation length L.

Since this cannot be done explicitly in practice, one regards (6.5) as a parametric equation

for L in terms of the integration constant r0. Combining it with (6.6) for E, one can

then determine the behavior of the potential energy of the configuration in terms of the

quark-antiquark separation. Using (6.5) and (6.6) we arrive at the following relation which

will prove useful in the following:

dEqq̄
dL

=
e2Φ(r0,0)

2π
. (6.7)

The minimum value of r allowed by the geometry depends on κ. Indeed, as argued at

the end of subsection 2.1, the numerator in the right-hand side of (6.3) has real roots only

when κ ≤ 1/16. In this case rmin = rH , where rH has been written in (2.19). Conversely,

when κ > 1/16 the minimum value of r is rmin = re.

Following the analysis in [21], we can determine the qualitative behavior of the system

simply by looking on the asymptotic expansion of the dilaton in (6.3). Utilizing their

formalism we write the lagrangian as:

L = T (r)
√

1 + Y (r) r′2 , (6.8)
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where T (r) is the effective tension of the brane depending on the dilaton. In our background

this is given by:

T (r) =
1

Y (r)1/2
= e2Φ(r,0) . (6.9)

When κ ≤ 1/16 both the tension of the string and Y behave in the IR with a power

law, T = 1
Y 1/2 ∼ (r − rmin)

1/2. Following the reasoning of ref. [21], due to the value of

the exponent of Y , the string will not reach an infinite length in the x direction when it

explores the far IR of the dual theory. As we will see in the next subsection this is verified

both by our numerical and analytical results.

When κ > 1/16 the string feels an effective IR wall at the point r = r∗ where the

tension is minimized, so T ′(r∗) = 0 and T ′′(r∗) > 0 (see figure 4). The actual value of

r∗ can be obtained analytically by finding the roots of a cubic polynomial. These roots

depend on κ and re and one can check that r∗ → 2re when κ is large. Since the background

at the point r = r∗ is smooth and the functions of the metric do not vanish, they admit a

Taylor expansion as:

T = T∗ + T2(r − r∗)
2 + . . . , T2 > 0,

Y = Y∗ + Y1(r − r∗) + . . . . . (6.10)

Following again the reasoning in [21], when the tip of the string comes close to the IR wall

the length will diverge. Again this is something we will verify in the next subsection.

6.2 Case with κ ≤ 1/16

For large values of r0 the potential is, as usual, Coulombic while their exists a maximal

separation κ ≤ 1/16. At the values of r0 where the separation is maximal, the energy

is also maximal and always positive (see figure 5). This means that there is a screening

behavior because as the potential turns positive, a configuration of two separate strings

is energetically favored and corresponds to a vanishing force between the charges. As

r0 → rmin = rH we find by studying the behavior of the integrals in eqs. (6.5) and (6.6)

in this case that both length and energy approach zero as:

L ⋍

√
2R

(
reZ∗
rH

)1/2 √
r0
rH

− 1 ln

[
3 rH

r0 − rH

]

, (6.11)

and

E ⋍
r0 − rH

2π
ln

[
3 rH

r0 − rH

]

. (6.12)

6.3 Case with κ > 1/16

In this case we follow the same steps as before but now we should have in mind that

rmin = re. As usual, the dependence of the potential energy for small separations L of the

quark-antiquark (corresponding to large r0) is Coulombic. In order to have an approximate

expression for the separation length and the energy we have to move to the region of the
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Figure 5: κ ≤ 1/16: Separation length between a quark and a antiquark as a function of r0 and

energy as a function of the separation length. The dashed (solid) curve is the case for κ = 1/16

(κ = 1/18).

parameter space where κ is large. In this case the effective IR wall is located at r = r∗ ⋍ 2re
and the potential gives a linear confining behavior with:

L ⋍
Z1/2
∗√

3 + 4κ
ln

[
6 re

r0 − 2re

]

, (6.13)

and

E ⋍
4 re
π

√
κ

3 + 4κ
ln

[
6 re

r0 − 2re

]

⋍
4re
π

√
κ

Z∗
L . (6.14)

For intermediate values of the separation length, the behavior of the system depends

crucially on the value of κ. There is a critical value κcr ≃ 63.8, such that for κ > κcr

the behavior of the length and energy curves resemble the Van der Waals isotherms for a

statistical system, with r0, L and E corresponding to volume, pressure and Gibbs potential

respectively (see, for instance, [38]). In the following we will describe the situation referring

to the corresponding plots in figure 6. In the region below the critical point, κ < κcr, the

energy is a single-valued function of the length, connecting a Coulombic with a linear

confining phase. For values above the critical point, κ > κcr, the Coulombic phase for the

energy at small distances is followed by a situation where the energy becomes a triple-valued

function of the length, with the physical state being the one of lowest energy. For large

distances the energy returns to a single-valued function of the length with approximately

linear behavior. The self-intersection point in the energy curve indicates the presence of

a first-order phase transition with order parameter r0. At this point we should note that

exactly at the critical value, κcr ≃ 63.8, the first order phase transition degenerates to a

second order one. Then using purely thermodynamical arguments and the fact that not

only the first but also the second derivative of the length vanishes at the critical value rcr0 ,

we have:

L− Lcr ∼ (r0 − rcr0 )3 , (6.15)
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Figure 6: κ > 1/16: Separation length between a quark and an antiquark as a function of r0
and energy as a function of the separation length. The left (right) curves correspond to the case

in which κ is below (above) the critical value and the central curves are the case in which κ has

exactly the critical value, κcr ≃ 63.8.

which is in agreement with gravity calculations using (6.5). The critical behavior vanishes

for κ < κcr. When κ = κcr so the corresponding critical exponent takes the classical

value 3. Using (6.7) and (6.15) we can calculate the behavior of the energy close to the

critical point:

Eqq̄ − Ecr
qq̄ ⋍

e2Φ(rcr
0
,0)

2π
(L− Lcr)

(

1 −A|L− Lcr|1/3
)

, (6.16)

where A is a constant. The above critical behavior is similar to that found in [39, 40, 19, 23].

This expression is calculated numerically by tuning κ very finely such that the first order

phase transition, seen in L(r0), just disappears. In order to do this we must zoom into the

region in the L(r0) plot where both L′(r0) and L′′(r0) simultaneously vanish. Using this

value of κ we are then able to fit the parametric plot of E and L to very high accuracy

and obtain the classical values to high numerical precision.

We close this section with the remark that the confining behavior appearing in the IR

is not something expected from a gauge theory point of view. For this reason, it would

be interesting to examine the stability of the string trajectory used for calculating the

quark-antiquark potential under small fluctuations, through the tools obtained in [41, 42].

7. Discussion

In this paper we have studied the addition of flavor to the supergravity dual of three-

dimensional gauge theories with eight supersymmetries. The unflavored background is

constructed by wrapping D4-branes in a two cycle of a Calabi-Yau twofold. The corre-

sponding flavor branes are also D4-branes that extend along the non-compact directions
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of the normal bundle of the cycle. We have shown that the addition of these flavor branes

does not break any of the eight supersymmetries preserved by the unflavored background.

We have studied this system both in the quenched and unquenched approaches and we

have obtained the meson spectrum by analyzing the normalizable fluctuations of the probe

flavor D4-branes. In the brane probe approximation we have also studied the Higgs branch

of the theory, which is realized as a configuration in which the color and flavor D4-branes

are recombined.

We have succeeded in computing the backreaction of a large number of flavor branes by

considering a continuous distribution of D4-branes smeared over their transverse angular

directions. The flavor branes provide a source term for the RR fields that induces a violation

of the Bianchi identity for F4. The ansatz for the backreacted background can be obtained

by modifying the unflavored one to satisfy the new Bianchi identities. By requiring that

the flavored background preserves the same amount of supersymmetry as the unflavored

solution, one arrives at a system of first-order BPS equations. We have checked that the

BPS equations imply the Maxwell-Einstein equations with sources. The functions in the

ansatz depend on the two radial variables σ and r and the BPS equations are a system

of PDEs that must be integrated numerically. However, the solution for σ = 0 can be

found analytically and we have shown that it reproduces the running of the coupling of the

Yang-Mills theory with flavors.

The supergravity solutions we have studied do not capture the rich non-perturbative

structure of the corresponding field theory duals. This fact is related to the bad IR behavior

of the solutions, which have a naked singularity in this region. This problem is similar to

the one presented by other similar backgrounds with the same amount of supersymmetry

in four [8, 15] and two dimensions [22]. As in these cases, one can argue that the singularity

can be consistently screened by an enhançon, which is the locus where the sources of the

background become effectively tensionless and the geometry ends. The fact that the gravity

solution reproduces the exact perturbative behavior and misses the non-perturbative effects

seems to be due to the suppression of the latter in the ’t Hooft large Nc limit.

We have also studied the behavior of Wilson loops in the unflavored background, which

critically depends on the value of the parameter κ of the solution. While for κ ≤ 1/16 there

is a maximal separation of the quark-antiquark pair, for κ > 1/16 there is a transition

from a Coulomb-like behavior at small separation to a linear potential for large separation.

Above a certain critical value of κ = κcr the transition is discontinuous (first order) while

exactly at the critical value of κ it becomes second order. At this point we have estimated

the critical exponents, which are given by the classical mean field theory values. Actually,

this critical behavior seems to be universal, at least for these type of models: we have

found it in the 4d system of [8], as well as in the 2d system of [22]. In both cases there is

a constant which is the analogue of κ and a critical value for this constant. Similar results

have been found in [39, 36, 40, 19, 20, 23] in other backgrounds. Interestingly, the critical

exponents in these systems are also given by the classical values. To properly interpret

these results one should have a clean understanding of the meaning of the constant κ (and

of its analogues in other models). The most natural interpretation is that κ parametrizes

the VEV of some operator that is switched on. However, more work is needed to confirm
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this interpretation and to find the precise nature of the phase transition uncovered. We

are working in this direction.
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A. BPS equations

Let us derive the BPS equations (3.12) of the general flavored background by imposing the

preservation of eight supersymmetries. For the type of background we are studying, the

supersymmetry variations for the dilatino λ and gravitino ψM in the type IIA theory in

the string frame are:

δλ =
1

2

[

ΓM ∂M Φ − 1

4 · 4! e
ΦF

(4)
MNPQ ΓMNPQ

]

ǫ ,

δψM =

[

∇M − 1

8 · 4! e
Φ F

(4)
NPQR ΓNPQR ΓM

]

ǫ , (A.1)

where ǫ is a ten-dimensional spinor. The Killing spinors of the background are those for

which δλ = δψM = 0. They will be characterized by a set of algebraic projection conditions

that can be expressed in terms of products of constant Dirac matrices with flat indices. In

order to specify these conditions, let us choose the following vielbein basis:

e0,1,2 = eΦdx0,1,2 , e3 = eΦZ 1

2Rdθ̃ , e4 = eΦZ 1

2R sin θ̃dφ̃ ,

e5 = e−ΦZ− 1

2dσ , e6 = e−ΦZ− 1

2σ
(

dψ + cos θ̃dφ̃
)

, (A.2)

e7 = e−Φdr , e8 = e−Φr dθ , e9 = e−Φr sin θdφ .

It is useful to express the four-form (3.11) in terms of the vielbein basis (A.2). One has:

F4 = − e4Φ

σr2

√
Z

(

g′ e7 +
√
Z ġ e5

)

∧ e6 ∧ e8 ∧ e9 +

+
1

Zr2R2

[

g +
Nf

2Nc

R3

8
Θ(r − rQ)

]

e3 ∧ e4 ∧ e8 ∧ e9 . (A.3)

Then, the projections satisfied by the Killing spinors are:

Γ01234 Γ11 ǫ = ǫ , Γ01256 Γ11 ǫ = −ǫ , (A.4)

where the indices of the Γ’s refer to the frame basis (A.2). One can easily show that, after

putting all these ingredients into the supersymmetry transformations for the gravitino
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and dilatino (A.1), we end up with the system (3.12) of first-order BPS equations for the

functions of our ansatz. Moreover, the expression for the Killing spinors is:

ǫ = e
Φ

2 e−
ψ
2
Γ34 e

θ
2
Γ78 e

φ
2
Γ89 η , (A.5)

where η is a constant spinor that satisfies the same projections (A.4) as ǫ. Notice that

these algebraic conditions imply that the system is 1/4-supersymmetric, i.e. that eight

supersymmetries are preserved.

Let us now show that the first-order BPS system (3.12) implies the second-order equa-

tions of motion of the different fields. First of all, let us start by checking the equation of

motion of F4, which is given by:

d(⋆F4) = 0 , (A.6)

One can prove that (A.6) is equivalent to the following PDE:

∂r

[ Zg′e8Φ
σr2

]

+ ∂σ

[ Z2ġe8Φ

σr2

]

=
σ

R4r2Z2

[

g +
Nf

2Nc

R3

8
Θ(r − rQ)

]

. (A.7)

Let us verify that equation (A.7) is satisfied as a consequence of the system (3.12). We

will check this fact by an explicit calculation. First, by using (3.12), we rewrite all terms

appearing in (A.7) as:

Zg′e8Φ
σr2

= − Z
R2

∂σ

(
σ

ZŻ

)

,

Z2ġ e8Φ

σr2
=

1

R2
∂r

(
σ

Ż

)

,

σ

Z2 r2

[

g +
Nf

2Nc

R3

8
Θ(r − rQ)

]

= R2 ∂r

( σ

Z
)

. (A.8)

By plugging this result into (A.7) one can straightforwardly verify (A.6). Thus, F6 = ⋆F4

should be represented as the derivative of a five-form, dC5. Indeed, by using again (3.12)

and (A.8) one can readily obtain an expression for this five-form potential, namely:

C5 = dx0 ∧ dx1 ∧ dx2 ∧
[

R2 Z e4Φ ω̃2 − σ

Z dσ ∧ (dψ + cos θ̃ dφ̃)

]

. (A.9)

In order to check that the Einstein and dilaton equations of motion are satisfied in the

flavored background, after using the BPS equations, we write them in the Einstein frame.

In this frame we will use a one-form basis which is just the one in (A.2) conveniently

rescaled with the exponential of the dilaton as:

EM̄ = e−
Φ

4 eM̄ . (A.10)

Notice that the smearing form Ω of (3.5) can be written in this basis as:

Ω =
Nf

16π2

e9Φ/4

R2

δ(r − rQ)

r2 Z E3 ∧ E4 ∧ E7 ∧ E8 ∧E8 . (A.11)
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Moreover, the DBI action for the smeared flavor branes in the Einstein frame takes the form:

SEDBI = −T4

∫

M10

d10x eΦ/4
√

− detGE
∣
∣Ω

∣
∣E , (A.12)

where GE = e−Φ/2G is the Einstein frame metric and the modulus
∣
∣Ω

∣
∣E is computed with

GE (from now on we will suppress the index E of GE). It follows immediately from (A.11)

that
∣
∣ Ω

∣
∣E is given by:

|Ω|E =
Nf

16π2

e9Φ/4

R2

δ(r − rQ)

r2 |Z| . (A.13)

The total action of the system is just the one of type IIA supergravity plus the DBI+WZ

action of the flavor branes. The corresponding equation of motion for the dilaton is:

� Φ =
1

4 · 4! e
Φ/2 F 2

4 + 2κ2
10 T4

eΦ/4

4
|Ω|E . (A.14)

Again, one can show that (A.14) is satisfied as a consequence of the system (3.12). The

verification of this fact is straightforward (but tedious) and will not be detailed here. Let

us just mention the fact that one has to evaluate the left-hand side of (A.14) by computing

the derivatives of the first-order BPS equations in (3.12). In this process one generates

some terms in which the Heaviside function Θ(r − rQ) is differentiated and, therefore, the

Dirac delta function δ(r−rQ) is produced. These terms match precisely the one containing
∣
∣ Ω

∣
∣E in (A.14), while the remaining ones correspond to the F 2

4 term.

The Einstein equations in the Einstein frame are:

RMN − 1

2
GMNR =

1

2

[

∂MΦ∂NΦ − 1

2
GMN (∂Φ)2

]

+

+
1

2 · 4!e
Φ/2

[

4(F 2
4 )MN − 1

2
GMNF

2
4

]

+ TMN , (A.15)

where TMN is the energy-momentum tensor of the smeared flavor brane, defined as:

TMN = − 2κ2
10√
−G

δSEDBI
δGMN

. (A.16)

Taking into account the form of SDBI in (A.12) we arrive at the following expression for

TMN in flat components:

TM̄N̄ = 2κ2
10T4

eΦ/4

2

[

ηM̄N̄

∣
∣ Ω

∣
∣E − 1

4!

1
∣
∣ Ω

∣
∣E

(Ω 2)M̄N̄

]

. (A.17)

From this expression one readily gets the explicit values of the different components of

TM̄N̄ , which are:

−T00 = T11 = T22 = T88 = T99 =
R

8

Nf

2Nc
e5Φ/2

δ(r − rQ)

2 r2 Z ,

T33 = T44 = T55 = T66 = T77 = 0 . (A.18)

By using these values one can verify, following the same strategy used to prove (A.14),

that the Einstein equations (A.15) are satisfied as a consequence of the first-order equa-

tions (3.12).
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B. Supersymmetric embeddings

In this appendix we will characterize a class of supersymmetric embeddings of D4-branes

in the backgrounds of sections 2 and 3. Our main tool will be kappa symmetry [43], which

states that the supersymmetric embeddings of the D4-brane are those that satisfy the

condition Γκ ǫ = ǫ, where ǫ is a Killing spinor of the background and Γκ is a matrix which

depends on the embedding. To write the precise form of Γκ, let us define the induced

Dirac matrices on the D4-brane worldvolume as γa = ∂aX
M EM̄M ΓM̄ , where XM (ξa) are

the functions that parameterize the embedding and EM̄M are the vielbein coefficients of

ten-dimensional metric. Then, when the worldvolume gauge field F is zero, the matrix Γκ
for the D4-brane is [44]:

Γκ =
1

5!

1
√

− det Ĝ5

Γ11 ǫ
a1···a5 γa1···a5 , (B.1)

where γa1···a5 denotes the antisymmetrized product of the induced matrices, Ĝ5 is the

induced metric on the D4-brane worldvolume and Γ11 is the chiral matrix in ten dimensions.

Let us choose, as in (3.1), x0, x1, x2, σ and ψ as worldvolume coordinates and let us consider

embeddings as in (4.11), in which θ̃ and φ̃ depend on (σ, ψ) and the remaining coordinates

are constant. Then, the kappa symmetry matrix (B.1) takes the following form:

Γκ =
1

√

− det Ĝ5

Γ11 γx0x1x2σψ , (B.2)

where the induced Gamma matrices are:

γx0,1,2 = eΦΓ0,1,2 ,

γσ = ReΦZ1/2
[

∂σ θ̃ Γ3 + sin θ̃ ∂σφ̃Γ4

]

+
1

eΦZ1/2

[

Γ5 + σ cos θ̃ ∂σφ̃Γ6

]

, (B.3)

γψ = ReΦZ1/2
[

∂ψ θ̃ Γ3 + sin θ̃ ∂ψφ̃Γ4

]

+
σ

eΦZ1/2

[

1 + cos θ̃ ∂ψφ̃
]

Γ6 .

To find those embeddings that are kappa symmetric and preserve the same amount of

supersymmetry as the original background, we should compute the action of the antisym-

metrized product γx0 x1 x2σψ on the spinor. Taking into account the projections (A.4),

we have:

e−3ΦΓ11 γx0 x1 x2σψ ǫ = [cI + c39Γ39 + c49Γ49] ǫ , (B.4)

where the coefficients appearing on the right-hand side of the above equation are:

cI =
σ

e2ΦZ
[

1 + σ cos θ̃ ∂ψφ̃
]

+R2 e2ΦZ sin θ̃
[

∂ψ θ̃ ∂σφ̃− ∂σ θ̃ ∂ψφ̃
]

,

c39 = R∂ψ θ̃ −Rσ sin θ̃ ∂σφ̃ ,

c49 = R sin θ̃∂ψφ̃+Rσ
[

∂σ θ̃ + cos θ̃
(

∂ψφ̃ ∂σ θ̃ − ∂σφ̃ ∂ψ θ̃
)]

. (B.5)

The right-hand side of (B.4) should contain only the term with the identity matrix if we

want to satisfy the Γκ ǫ = ǫ condition for any Killing spinor of the background. Thus, we

must demand that:

c39 = c49 = 0 , (B.6)
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which leads us to the following system of PDE’s:

∂ψ θ̃ − σ sin θ̃ ∂σφ̃ = 0 ,

sin θ̃∂ψφ̃+ σ
[

∂σ θ̃ + cos θ̃
(

∂ψφ̃ ∂σ θ̃ − ∂σφ̃ ∂ψ θ̃
)]

= 0 . (B.7)

The general solution of the system (B.7) was obtained in ref. [22]. As mentioned in subsec-

tion 4.2, if one defines the two complex variables ζ1 and ζ2 as in (4.12), any holomorphic

function ζ1 = f(ζ2) solves (B.7). The corresponding embedding preserves the eight super-

symmetries of the background.

C. Additional supergravity backgrounds

In this appendix we find additional supergravity solutions for our unflavored setup. First

of all we will show that it is possible to find solutions for the unflavored BPS system of

equations (2.8) that are simpler than those coming from gauged supergravity. Later on,

in subsection C.1, after performing a series of duality transformations to the unflavored

solution of section 2, we will generate a background dual to a non-relativistic system in

1+1 dimensions.

Let us try to solve the unflavored BPS system (2.8) by means of the method of sepa-

ration of variables. Accordingly, let us adopt the following ansatz for the three functions

g, Φ and Z appearing in the background:

g = g(σ) , Φ = Φ(r) , Z = Z1(r)Z2(σ) . (C.1)

It is straightforward to show that the general solution of the system (2.8) that has the form

of the ansatz (C.1) is:

g(σ) = c1R
2
√

c4 + c3 σ2 ,

e−4Φ(r) = c3R
2

[

c2 +
c1
r

]2

,

Z(r, σ) =

(

c2 +
c1
r

)
√

c4 + c3 σ2 , (C.2)

where the ci’s are separation constants. The ten-dimensional metric corresponding to this

solution can be obtained by plugging the values of e−4Φ and Z given in (C.2) into a general

ansatz. Proceeding in this way we arrive at the split 6+4 metric:

ds210 = ds26 + ds24 , (C.3)

where the six-dimensional metric is independent of σ:

ds26 = e2Φ dx2
1,2 + e−2Φ

[
dr2 + r2 dΩ2

2

]
, (C.4)

while the four-dimensional metric is independent of r:

ds24 =
R
√
c4 + c3 σ2

√
c3

(

dθ̃2 + sin2 θ̃dφ̃2
)

+
R
√
c3√

c4 + c3 σ2

[

dσ2 + σ2
(
dψ + cos θ̃dφ̃

)2
]

.

(C.5)
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In order to rewrite the metric (C.5) in a more familiar form, let us perform a change of

variables and define a new radial variable ζ, related to σ in the following way:

ζ2 =
4R√
c3

√

c4 + c3 σ2 . (C.6)

Actually, if we define a new constant a as:

a4 =
16R2c4
c3

, (C.7)

the relation that gives σ in terms of ζ is:

σ =
1

4R

√

ζ4 − a4 . (C.8)

Clearly, ζ ≥ a, which corresponds to the range σ ≥ 0. After this change of variable, one

can easily prove that the metric (C.5) becomes:

ds24 =
dζ2

1 −
(
a
ζ

)4 +
ζ2

4

[

dΩ̃2
2 +

(

1 −
(
a

ζ

)4 )
(
dψ + cos θ̃dφ̃

)2
]

, (C.9)

which is the metric of an Eguchi-Hanson space EH4 with resolution parameter a. When

a = 0 the metric (C.9) becomes the one corresponding to the C
2/Z2 orbifold. Moreover, if

we define the new constants η and Q as:

η ≡ R
√
c3 c2 , Q ≡ R

√
c3 c1 , (C.10)

then, the warp factor e−4Φ becomes:

e−4Φ =

(

η +
Q

r

)2

. (C.11)

Using this result the six-dimensional part of the metric takes the form:

ds26 =
dx2

1,2

η + Q
r

+

(

η +
Q

r

) [

dr2 + r2 dΩ2
2

]

. (C.12)

Notice that, for η 6= 0, the metric (C.12) is asymptotically flat.

C.1 Non-relativistic backgrounds

Let us now follow the procedure of ref. [45] to obtain backgrounds dual to non-relativistic

systems by performing a combination of two T-dualities and a shift to a supergravity dual

of a relativistic theory. First of all, we introduce light-cone variables in the standard way,

x± = x0 ± x1, and rewrite the initial metric and the dilaton of the unflavored type IIA

background as:

ds2IIA = H−1/2
[

− dx+dx− + (dx2)2 + ZR2
(

dθ̃2 + sin2 θ̃dφ̃2
)]

+

+H1/2

[

dr2 + r2dΩ2
2 +

1

Z

(

dσ2 + σ2
(

dψ + cos θ̃dφ̃
)2

)]

,

e2Φ = H−1/2 . (C.13)
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Notice that we have introduced the warp factor H. Similarly, the RR potentials in these

variables take the form:

C3 = − g ω2 ∧ (dψ + cos θ̃ dφ̃) ,

C5 = − 1

2
dx+ ∧ dx− ∧ dx2 ∧

[
R2Z
H

ω̃2 − σ

Z dσ ∧ (dψ + cos θ̃ dφ̃)

]

. (C.14)

In the first step we perform a T-duality along the fiber direction ψ. In general, under T-

duality the fields in the NSNS sector form a closed set and transform amongst themselves.

Hence for these fields we may use the standard rules. In contrast, the transformation rules

for the RR sector fields involve those in the NSNS sector. The metric and dilaton after

this T-duality become:

ds2IIB = H−1/2
[

− dx+dx− + (dx2)2 + ZR2
(

dθ̃2 + sin2 θ̃dφ̃2
)]

+

+H1/2

[

dr2 + r2dΩ2
2 +

1

Z dσ2

]

+H−1/2 Z
σ2

dψ2 ,

e2Φ =
Z
σ2

H−1 , (C.15)

while the non-vanishing NSNS and RR potentials are:

B2 = cos θ̃ dψ ∧ dφ̃ ,
C2 = −gω2 , C4 =

σ

2Z dx+ ∧ dx− ∧ dx2 ∧ dσ ,

C6 = − R2Z
2H

dx+ ∧ dx− ∧ dx2 ∧ ω̃2 ∧ dψ . (C.16)

In the second step we perform a coordinate shift along the light-cone coordinate x− of

the form:

x− → x− + γψ −→ dx− → dx− + γdψ . (C.17)

The corresponding metric and the dilaton become:

ds2IIB = H−1/2
[

− dx+dx− − γdx+dψ + (dx2)2 + ZR2
(

dθ̃2 + sin2 θ̃dφ̃2
)]

+

+H1/2

[

dr2 + r2dΩ2
2 +

1

Z dσ2

]

+H−1/2 Z
σ2

dψ2 ,

e2Φ =
Z
σ2

H−1 . (C.18)

while the non-vanishing NSNS and RR potentials are:

B2 = cos θ̃ dψ ∧ dφ̃ ,
C2 = −gω2 , C4 =

σ

2Z dx+ ∧
(
dx− + γdψ

)
∧ dx2 ∧ dσ ,

C6 = − R2Z
2H

dx+ ∧ dx− ∧ dx2 ∧ ω̃2 ∧ dψ . (C.19)
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Finally we perform another T-duality along ψ and return to a type IIA background. Now

the metric and the dilaton become:

ds2IIA = H−1/2

[

− dx+

(

dx− +
γ2

4

σ2

Z dx+

)

+ (dx2)2 + ZR2
(

dθ̃2 + sin2 θ̃dφ̃2
)]

+

+H1/2

[

dr2 + r2dΩ2
2 +

1

Z

(

dσ2 + σ2
(

dψ + cos θ̃dφ̃
)2

)]

,

e2Φ = H−1/2 . (C.20)

while the non-vanishing NSNS and RR potentials are:

B2 =
γ

2

σ2

Z dx+ ∧ (dψ + cos θ̃dφ̃) ,

C3 = − g ω2 ∧ (dψ + cos θ̃ dφ̃) +
γ

2

σ

Z dx+ ∧ dx2 ∧ dσ ,

C5 = − 1

2
dx+ ∧ dx− ∧ dx2 ∧

[
R2Z
2H

ω̃2 − σ

Z dσ ∧ (dψ + cos θ̃ dφ̃)

]

. (C.21)

The corresponding field strengths of these potentials are H3 = dB2, F4 = dC3. By com-

puting the exterior derivatives and using the BPS equations we have:

H3 =
γ

2

[
gσ2

Z2r2R2
dr +

2σ

Z

(

1 − σ2H

2Z2R2
dσ

)]

∧ dx+ ∧
(

dψ + cos θ̃dφ̃
)

+
γ

2

σ2

Z dx+ ∧ ω̃2 , (C.22)

F4 = − dg ∧ ω2 ∧
(

dψ + cos θ̃dφ̃
)

+ g ω2 ∧ ω̃2 +
γ

2

σg

r2Z2R2
dx+ ∧ dx2 ∧ dr ∧ dσ .

As a consistency check we can verify that these forms satisfy their equations of motion:

d
(

e−2Φ ∗H3

)

=
1

2
F4 ∧ F4 , d

(
∗F4

)

= H3 ∧ F4 . (C.23)

D. Entanglement entropy

In quantum field theory the entanglement entropy between two complementary spatial

regions A and B is defined as the entropy seen by an observer in A who does not have

access to the degrees of freedom of B. The holographic computation consists of finding the

eight-dimensional surface Σ with minimal area such that its boundary coincides with the

boundary of A. Then, the entanglement entropy between A and its complementary region

B is given by the integral [46]:

S =
1

4G10

∫

Σ
d8ξ e−2Φ

√

Ĝ8 , (D.1)

where G10 is the ten-dimensional Newton constant, given by G10 = 8π6α′4g2
s and Ĝ8 is the

induced metric on Σ (see also [47]). We will consider a constant time surface Σ, obtained by

minimizing S over all surfaces that approach the boundary of A at the boundary of the ten-

dimensional bulk manifold and that are extended along the remaining spatial directions.
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The surface we consider is not going to touch the IR region of the space, so it is feasible

to use the UV expression (2.24). We parametrize the eight-dimensional surface in the

following way:

ξa = (x, x2, θ̃, φ̃, α̂, θ, φ, ψ) , (D.2)

with u = u(x). By computing the induced metric we end up with the following expression

for S:

S =
2π3R5

3G10

∫ l
2

− l
2

dxu

√

u′2 +
8√Z∗

( u

R

)3
. (D.3)

Since the function S does not depend explicitly on x, the Euler-Lagrange equation derived

from S can be integrated with the result being the following:

u4

√

u′2 + 8√
Z∗

(
u
R

)3
= u

5/2
0

R3/2 Z1/4
∗

2
√

2
, (D.4)

where u0 is the minimal value of u. From this expression we can obtain u′ as a function

of u:

u′ = ±
√

8

R3Z1/2
∗

u3/2

√

u5

u5
0

− 1 . (D.5)

Now we can compute the length l as a function of the turning point u0 of the holo-

graphic coordinate:

l = 2

∫ ∞

u0

du

|u′ | =

√

2π
√

Z∗R3
Γ(3

5)

Γ( 1
10 )

1√
u0

. (D.6)

We can use (D.5) to eliminate u′ in the entropy functional S. The resulting integral is

divergent if the upper limit is infinity. For this reason we regulate it by integrating up to

some value u∞ of u and we have:

S =
2π3R5

3G10
u2

0

∫ u∞
u0

1

ξ7/2
√

ξ5 − 1
dξ . (D.7)

The integral appearing on the right hand side of the above equation takes the value:

∫ u∞
u0

1

ξ7/2
√

ξ5 − 1
dξ = −

√
π

2

Γ(3
5 )

Γ( 1
10)

− 1

5
B

[
u5

0

u5
∞
,−2

5
,
1

2

]

, (D.8)

where B is the symbol for the incomplete Beta function. Taking the limit of the above

expression when u∞ → ∞ we obtain finite and divergent terms:

∫ u∞
u0

1

ξ7/2
√

ξ5 − 1
dξ ≈ −

√
π

2

Γ(3
5)

Γ( 1
10 )

+
1

2

(
u∞
u0

)2

+ O
(
u0

u∞

)2

. (D.9)

Plugging the finite part of this result in (D.7) and using (D.6) to express u0 in terms of l

we have:

Sfinite(l) = − (2πR10)V∞
25√π

3

[

Γ(3
5)

Γ( 1
10 )

]5
N3
c

l4
, (D.10)
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where R10 = gsα
′1/2 and V∞ is the volume of a sphere of radius RZ1/2

∗ along which the

D4-branes are wrapped:

V∞ = 4πR2 Z∗ . (D.11)

The expression (D.10) just obtained coincides with the one found in [47] for an M5-brane

compactified in a two sphere of volume V∞. This result was, of course, to be expected,

given the UV behavior of our metric.
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